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1. Introduction 
 

Optical solitons form the basic fabric in 

telecommunication industry. These soliton molecules 

carry loads of information and transfer data through 

optical fibers, metamaterials and other forms of 

waveguides across transcontinental and trransoceanic 

distances. These fibers and metamaterials appear with 

several forms of nonlinearity [1-5]. The most commonly 

studied forms are Kerr law, power law parabolic law, 

dual-power law, logarithmic nonlinear law and others 

[5]. This paper studies optical solitons with a very new 

form of nonlinearity that was proposed during 2011 and 

was later studied during 2017 [1, 4]. It is referred to as 

cubic-quintic nonlinear form. In previous works, exact 

soliton solutions and conservation laws are reported [4].  

This paper is an extended version of the results that 

are already known for the unperturbed NLSE. The 

governing nonlinear Schrödinger's equation (NLSE) 

with quadratic-cubic nonlinearity will be studied in 

presence of perturbation terms that are of Hamiltonian 

type. This will prevent the destruction of integrability of 

the perturbed NLSE. Traveling wave hypothesis will be 

the integrability criteria of the governing model. This 

will yield bright, singular and combo 1-soliton solutions 

to perturbed NLSE, depending on the sign of the 

discriminant, as will be seen. The details of these 

analysis are detailed in the following sections. 

 

 

2. The governing equation 
 
The dimensionless form of the governing equation 

for perturbed NLSE with quadratic-cubic nonlinearity in 

presence of Hamiltonian perturbations is  given by  

 

The dimensionless form of the governing equation for 

perturbed NLSE with quadratic-cubic nonlinearity in 

presence of Hamiltonian perturbations is given by  
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 In (1) ( , )q x t  represents the complex-valued wave profile 

where x  and t  are spatial and temporal variables 

respectively. The first term on left hand side is temporal 

evolution while the coefficient of a   is the group velocity 

dispersion. The two nonlinear terms on the left-hand side 

with coefficients 1b   and 2b   are with quadratic and cubic 

forms respectively. On the right-hand side   is the 

coefficient of inter-modal dispersion. This arises from the 

fact that the group velocity of light propagating through a 

waveguide depends, in addition to optical frequency, (also 

known as chromatic dispersion), on the propagation mode 

involved. The coefficient of   is the self-steepening term 

that avoids the formation of shock waves. Finally,    is the 

coefficient of nonlinear dispersion. This paper will integrate 

(1) to extract soliton solutions by the aid of traveling wave 

hypothesis. 

 

 

3. Mathematical analysis 

 
In order to get started, the following hypothesis is 

selected:  

 
( , )( , ) ( ) ,i x tq x t g s e                         (2) 

where ( )g s  represents the shape of the pulse and 
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 ,s x vt                               (3) 

 

 and the phase component is defined as  

 

0( , ) .x t x t                       (4) 

 

 Here,    is the soliton frequency,    is the wave 

number of the soliton and 
0   is the phase constant. 

Also, in (3), v  represents the speed of the soliton. 

Substituting (2) into (1) and decomposing into real and 

imaginary parts, give  
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 and  

 

  22 3 2 ( ) 0,v a g s               (6) 

 

 respectively. In (5), ( ) /g s dg ds   and  

2 2( ) / .g s d g ds   From (6), setting the coefficients 

of the linearly independent functions to zero gives the 

speed of the soliton as:  

 

2v a                             (7) 

 

 and the constraint condition  

 

3 2 0.                             (8) 

 

Next, multiplying both sides of (5) by ( )g s
 and 

integrating with respect to s  gives  
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Separating variables in (9) and integrating yields the 

following three cases:  

 

Case-1: (Bright soliton)  
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Thus, bright 1-soliton solution is given by  
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where the amplitude 
1A ,    the width B   and the parameter 

1D  are given by  
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and  
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 The width of the soliton B  introduces another constraint 

that is given by  

 

 2 0.a a                        (16) 

 
The following Fig. 1 is the bright soliton solution to the 

model. The parameter values  chosen in this case are: 

1 21, 1, 1, 0.6, 1, 1, 1a b b             

 

 
 

Fig. 1. Bright Soliton 

 

 

Case-2: (Singular soliton)  
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whenever  
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  2 2
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In this case, singular 1-soliton solution is  
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where the parameters 
2A   and 

2D   are  

 

 

  

2

2
2 2

2 1

6
,

18 4

a
A

a b b

  

   

 


   
 (20) 

 and  

 

  

1

2
2 2

2 1

2
,

18 4

b
D

a b b   


   
  (21) 

 

respectively. The parameter B   stays the same as in 

(15) together with the constraint (16).  

 

 

Case-3: Combo solitons  
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Finally, the combo 1-soliton solution is  
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The parameter B  from (15) together with the the 

constraint (16) still remains valid here. 

 

 

4. Conclusions 
 

This paper obtained bright, singular and combo optical 

soliton solution to perturbed NLSE that appars with 

quadratic-cubic nonlinearity. The perturbation terms are 

related to inter-modal dispersion, nonlinear dispersion and 

self-steepening. The traveling wave hypothesis is employed 

in this paper. The soliton solutions  appear with constraint 

conditions that naturally emerge from the mathematical 

structure of its parameters such as the amplitude and width. 

The results of this paper are an extended version of the 

results that are reported in the past [4]. In fact, when the 

perturbation terms are turned off, all results of this paper 

collapse to the ones that are obtained earlier [4]. These 

extended results will further serve as a foundation stone to 

study this problem. Later, these results will be extended to 

optical couplers, optical metamaterials, magneto-optic 

waveguides and other such devices. Those extensions are 

presently awaited and will be disseminated soon. 
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